73 research outputs found

    Protecting Privacy of Shared Epidemiologic Data without Compromising Analysis Potential

    Get PDF
    Objective. Ensuring privacy of research subjects when epidemiologic data are shared with outside collaborators involves masking (modifying) the data, but overmasking can compromise utility (analysis potential). Methods of statistical disclosure control for protecting privacy may be impractical for individual researchers involved in small-scale collaborations. Methods. We investigated a simple approach based on measures of disclosure risk and analytical utility that are straightforward for epidemiologic researchers to derive. The method is illustrated using data from the Japanese Atomic-bomb Survivor population. Results. Masking by modest rounding did not adequately enhance security but rounding to remove several digits of relative accuracy effectively reduced the risk of identification without substantially reducing utility. Grouping or adding random noise led to noticeable bias. Conclusions. When sharing epidemiologic data, it is recommended that masking be performed using rounding. Specific treatment should be determined separately in individual situations after consideration of the disclosure risks and analysis needs

    Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer

    Get PDF
    Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (<50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, <50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters

    Effects of Omitting Non-confounding Predictors From General Relative-Risk Models for Binary Outcomes

    No full text
    Background: The effects, in terms of bias and precision, of omitting non-confounding predictive covariates from generalized linear models have been well studied, and it is known that such omission results in attenuation bias but increased precision with logistic regression. However, many epidemiologic risk analyses utilize alternative models that are not based on a linear predictor, and the effect of omitting non-confounding predictive covariates from such models has not been characterized. Methods: We employed simulation to study the effects on risk estimation of omitting non-confounding predictive covariates from an excess relative risk (ERR) model and a general additive-multiplicative relative-risk mixture model for binary outcome data in a case-control setting. We also compared the results to the effects with ordinary logistic regression. Results: For these commonly employed alternative relative-risk models, the bias was similar to that with logistic regression when the risk was small. More generally, the bias and standard error of the risk-parameter estimates demonstrated patterns that are similar to those with logistic regression, but with greater magnitude depending on the true value of the risk. The magnitude of bias and standard error had little relation to study size or underlying disease prevalence. Conclusions: Prior conclusions regarding omitted covariates in logistic regression models can be qualitatively applied to the ERR and the general additive-multiplicative relative-risk mixture model without substantial change. Quantitatively, however, these alternative models may have slightly greater omitted-covariate bias, depending on the magnitude of the true risk being estimated
    corecore